Formelsammlung für die Hochfrequenztechnik

http://www.siart.de/lehre/hf-formeln.pdf

Uwe Siart tutorien@siart.de

29. März 2025 (Version 0.66)

Inhaltsverzeichnis

1	Natur- und Feldkonstanten						
2	Bau	elemente	2				
3	Elek	tromagnetische Felder	3				
	3.1	Grundgleichungen	3				
	3.2	Vektoranalysis	3				
	3.3	Ebene Wellen	4				
	3.4	Polarisation	5				
	3.5	Freiraumausbereitung	5				
	3.6	Streuung	6				
	3.7	Reflexion an Grenzflächen	6				
4	Wellenleiter						
	4.1	TEM-Leitungen	6				
	4.2	Koaxialleitungen	7				
	4.3	Rechteckhohlleiter	7				

	4.4	Rundhohlleiter	8		
	4.5	Mikrostreifenleitungen	8		
5	Ante	ennen	9		
6	Pass	ive Schaltungen	10		
	6.1	Schwingkreise	10		
	6.2	Koppelschaltungen	10		
	6.3	Dämpfungsglieder	11		
	6.4	Filter	11		
7	Mik	rowellennetzwerke	12		
8	Rauschen				
9	Oszillatoren				
10	Vers	tärker	14		

1 Natur- und Feldkonstanten

Name	Symbol	international empfohlener Wert (CODATA vom 31.12.2022 [24])	gebräuchlicher Näherungswert	Zusammenhang mit anderen Größen
Vakuum-Lichtgeschwindigkeit	c_0	299792458 m/s	$3 \cdot 10^8 \mathrm{m/s}$	$c_0 = 1/\sqrt{\varepsilon_0 \mu_0}$
Vakuum-Permeabilität	μ_0	$1,25663706127(20) \cdot 10^{-6} \text{ Vs}/(\text{Am})$	$4\pi \cdot 10^{-7} \text{ Vs}/(\text{Am})$	$\mu_0 = 1/(\varepsilon_0 c_0^2)$
Vakuum-Permittivität	\mathcal{E}_0	$8,8541878188(14) \cdot 10^{-12} \text{ As}/(\text{Vm})$	$8,85 \cdot 10^{-12} \mathrm{As}/(\mathrm{Vm})$	$\varepsilon_0 = 1/(\mu_0 c_0^2)$
Boltzmann-Konstante	k	$1,380649 \cdot 10^{-23} \mathrm{J/K}$	$1,38 \cdot 10^{-23} \mathrm{J/K}$	
Elementarladung	е	$1,602176634 \cdot 10^{-19} \mathrm{C}$	$1,602 \cdot 10^{-19} \mathrm{C}$	
Elektronenmasse	m _e	$9,1093837139(28) \cdot 10^{-31} \mathrm{kg}$	$9,109 \cdot 10^{-31} \mathrm{kg}$	
Feldwellenwiderstand im Vakuum	$Z_{\rm F0}$	376,730313412(59) Ω	$120\pi\Omega\approx377\Omega$	$Z_{\rm F0} = \mu_0 c_0 = \sqrt{\mu_0/\varepsilon_0}$

2 Bauelemente

Eindringtiefe (äquivalente Leitschichtdicke):

$$\delta = \sqrt{\frac{2}{\omega \,\kappa \,\mu_0 \,\mu_r}}$$

 κ : Leitfähigkeit (in S/m)

Stromdichte in der Leitschicht:

$$J(z) = J_0 \cdot e^{-(z/\delta)} \cdot e^{-j(z/\delta)}$$

Flächenwiderstand:

$$R_* = \frac{1}{\kappa\delta} = \sqrt{\frac{\omega\mu_0\mu_r}{2\kappa}} = \sqrt{\frac{\pi f\mu_0\mu_r}{\kappa}}$$

Spezifische Oberflächenimpedanz:

 $Z_* = (1 + j)R_*$

Beziehung zwischen der Oberflächenstromdichte J_* und der tangentialen magnetischen Feldstärke H_{tan} an der Oberfläche:

 $J_* = n \times H_{tan}$

Gleichstromwiderstand:

$$R_0 = \frac{\ell}{A_0 \kappa}$$

l: Länge (in m)*A*₀: Querschnittsfläche (in m²)

Hochfrequenzwiderstand:

$$\frac{R_{\sim}}{R_0} = \frac{1}{4} \frac{D}{\delta} \quad \text{und} \quad R_{\sim} \propto \sqrt{f}$$

Kapazität eines Plattenkondensators:

$$C = \varepsilon_{\rm r} \varepsilon_0 \frac{a \cdot b}{\Delta}$$

a, b: Kantenlängen (in m)

 Δ : Plattenabstand (in m)

Näherungsweise Berücksichtigung der Randstreuung:

$$a \longmapsto a + \frac{\Delta}{2}$$
 $b \longmapsto b + \frac{\Delta}{2}$

Komplexe Dielektrizitätszahl:

$$\varepsilon_{\rm r} = \varepsilon_{\rm r}' - j\varepsilon_{\rm r}'' = |\varepsilon_{\rm r}|e^{-j\delta_{\varepsilon}} \approx \varepsilon_{\rm r}'(1-j\tan\delta_{\varepsilon})$$

Admittanz eines verlustbehafteten Kondensators:

$$Y = j\omega C + G_p = j\omega C + \omega C \tan \delta_{\varepsilon}$$

Umrechnung zwischen Parallel- und Serienverlustwiderstand bei *kleinen* Verlusten:

$$R_{\rm P}R_{\rm S} = X^2$$
 mit $X_L = \omega L$ bzw. $X_C = -\frac{1}{\omega C}$

Güte von verlustbehafteten reaktiven Bauelementen:

$$Q_C = \frac{\omega C}{G_P} = \frac{1}{\omega C R_S} = \frac{1}{\tan \delta_C}$$
$$Q_L = \frac{\omega L}{R_S} = \frac{1}{\omega L G_P} = \frac{1}{\tan \delta_L}$$

(Eigen-)induktivität einer Stromschleife:

$$L = \frac{\Phi^{(I)}}{I} = \frac{\iint \boldsymbol{B}^{(I)} \, \mathrm{d}\boldsymbol{A}}{I}$$

Induktivität eines Kreisringes:

$$L \approx \mu R \cdot \left(\ln \frac{R}{r} + 0.08 \right)$$

Induktivität einer Zylinderspule ohne Kern:

$$L \approx \mu_0 \frac{n^2 D^2 \pi}{4 (\ell + 0.45 D)}$$

n: Windungszahl

- D: Durchmesser (in m)
- ℓ : Länge (in m)

Induktivität eines Ringkernes mit Luftspalt:

$$L = n^2 \frac{\mu_0 \,\mu_{\rm r} \,A}{\ell_{\rm m}} \cdot \frac{1}{1 + \mu_{\rm r} \frac{\ell_{\rm L}}{\ell_{\rm m}}}$$

A: Querschnittsfläche (in m²)

 ℓ_m : mittlere Feldlinienlänge (in m)

ℓL: Länge des Luftspalts (in m)

Gegeninduktivität zweier Stromschleifen *K*₁ und *K*₂:

$$M_{12} = \frac{\Phi_{12}}{I_1} = \frac{\mu_0}{4\pi} \oint_{K_1 K_2} \frac{\mathrm{d} \boldsymbol{r}_1 \cdot \mathrm{d} \boldsymbol{r}_2}{\|\boldsymbol{r}_2 - \boldsymbol{r}_1\|} = \frac{\Phi_{21}}{I_2} = M_{21}$$

Koppelfaktor:

$$k = \frac{M_{12}}{\sqrt{L_1 L_2}} \qquad \qquad 0 \le k \le 1$$

Gekoppelte Induktivitäten:

$$\begin{pmatrix} U_1 \\ U_2 \end{pmatrix} = j\omega \begin{pmatrix} L_1 & \pm M_{12} \\ \pm M_{12} & L_2 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix}$$

Reihenschaltung gekoppelter Induktivitäten:

$$L_{\text{ges}} = L_1 + L_2 \pm 2M_{12}$$

3 Elektromagnetische Felder

3.1 Grundgleichungen

Maxwellsche Gleichungen in Differenzialform:

div
$$E(\mathbf{r}, t) = \frac{\rho(\mathbf{r}, t)}{\varepsilon_0}$$

rot $E(\mathbf{r}, t) = -\frac{\partial B(\mathbf{r}, t)}{\partial t}$
div $B(\mathbf{r}, t) = 0$
rot $B(\mathbf{r}, t) = \mu_0 \left(J(\mathbf{r}, t) + \varepsilon_0 \frac{\partial E(\mathbf{r}, t)}{\partial t} \right)$

Stromdichte und Raumladungsdichte:

$$\rho = \rho_{\text{pol}} + \rho_{\text{f}}$$
$$J = J_{\text{f}} + J_{\text{mag}} + J_{\text{pol}}$$

mit

 $\rho_{\text{pol}} = -\operatorname{div} P$ $J_{\text{mag}} = \operatorname{rot} M$ $J_{\text{pol}} = \frac{\partial P}{\partial t}$

Elektrische Polarisation:

$$\boldsymbol{P} = \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}V} = \frac{\mathrm{d}\boldsymbol{Q}\boldsymbol{\ell}}{\mathrm{d}V} = \rho\boldsymbol{\ell}$$

Magnetisierung:

$$M = \frac{\mathrm{d}\boldsymbol{m}}{\mathrm{d}\boldsymbol{V}}$$

ℓ: Verschiebungsvektor

p: elektrisches Dipolmoment

m: magnetisches Dipolmoment

Materialgleichungen:

 $D = \varepsilon_0 \varepsilon_r E$ $B = \mu_0 \mu_r H$

Maxwellsche Gleichungen mit Materialgrößen:

div
$$D(\mathbf{r}, t) = \rho_{f}(\mathbf{r}, t)$$

rot $E(\mathbf{r}, t) = -\frac{\partial B(\mathbf{r}, t)}{\partial t}$
div $B(\mathbf{r}, t) = 0$
rot $H(\mathbf{r}, t) = J_{f}(\mathbf{r}, t) + \frac{\partial D(\mathbf{r}, t)}{\partial t}$

In dieser Form treten nur noch freie Ladungen $\rho_{\rm f}$ und freie Ströme $J_{\rm f}$ auf.

Maxwellsche Gleichungen im Frequenzbereich:

$$div D(r) = \rho_{f}(r)$$

rot $E(r) = -j\omega B(r)$
 $div B(r) = 0$
rot $H(r) = J_{f}(r) + j\omega D(r)$

Energiedichte des elektromagnetischen Feldes:

Ohmsches Gesetz für bewegte Leiter:

 $J = \kappa (E + v \times B)$

3.2 Vektoranalysis

Infinitesimales Element der Kurve r(t):

 $ds = ||\dot{r}|| dt \qquad \text{skalar}$ $ds = \dot{r} dt \qquad \text{vektoriell}$

Tangenteneinheitsvektor:

$$\boldsymbol{t} = \frac{\dot{\boldsymbol{r}}(t)}{\|\dot{\boldsymbol{r}}(t)\|}$$

Infinitesimales Element der Fläche r(u, v):

 $dA = \|\mathbf{r}_u \times \mathbf{r}_v\| du dv \qquad \text{skalar}$ $d\mathbf{A} = (\mathbf{r}_u \times \mathbf{r}_v) du dv \qquad \text{vektoriell}$

Normaleneinheitsvektor:

$$\boldsymbol{n} = \frac{\boldsymbol{r}_u \times \boldsymbol{r}_v}{\|\boldsymbol{r}_u \times \boldsymbol{r}_v\|}$$

Infinitesimales Element des Volumens r(u, v, w):

$$\mathrm{d}V = (\boldsymbol{r}_u \times \boldsymbol{r}_v) \cdot \boldsymbol{r}_w \,\mathrm{d}u \,\mathrm{d}v \,\mathrm{d}w = \left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| \,\mathrm{d}u \,\mathrm{d}v \,\mathrm{d}w$$

Infinitesimales Element des Raumwinkels:

$$\mathrm{d}\Omega = \frac{\mathrm{d}A \cdot u_r}{r^2} \qquad \qquad \oint \mathrm{d}\Omega = 4\pi$$

 u_r : radialer Einheitsvektor in Kugelkoordinaten

Kurvenelement	$\mathrm{d}\boldsymbol{s} = \mathrm{d}\boldsymbol{r}\boldsymbol{u}_r + (r\mathrm{d}\varphi)\boldsymbol{u}_\varphi + \mathrm{d}\boldsymbol{z}\boldsymbol{u}_z$
Flächenelement	$dA = r d\varphi dz u_r$ $dA = dr dz u_{\varphi}$ $dA = r dr d\varphi u_z$
Volumenelement	$\mathrm{d}V = r \mathrm{d}r \mathrm{d}\varphi \mathrm{d}z$

Infinitesimale Elemente in Kugelkoordinaten:

Kurvenelement	$\mathrm{d}\boldsymbol{s} = \mathrm{d}r\boldsymbol{u}_r + (r\mathrm{d}\vartheta)\boldsymbol{u}_\vartheta + (r\sin\vartheta\mathrm{d}\varphi)\boldsymbol{u}_\varphi$			
Flächenelement	$dA = r^{2} \sin \vartheta d\vartheta d\varphi u_{r}$ $dA = r \sin \vartheta dr d\varphi u_{0}$			
	$dA = r dr d\vartheta u_{\varphi}$ $dA = r dr d\vartheta u_{\varphi}$			
Volumenelement	$\mathrm{d}V = r^2 \sin\vartheta\mathrm{d}r\mathrm{d}\vartheta\mathrm{d}\varphi$			
Raumwinkelelement	$\mathrm{d}\Omega = \sin\vartheta\mathrm{d}\vartheta\mathrm{d}\varphi$			

3.3 Ebene Wellen

Elektrisches und magnetisches Feld:

$$E(\mathbf{r}) = E(\mathbf{0}) e^{-j\mathbf{k}\cdot\mathbf{r}} \qquad \qquad H(\mathbf{r}) = \frac{1}{Z_{\rm F}} \mathbf{u} \times E(\mathbf{r})$$

Wellenzahl und Wellenvektor:

 $\boldsymbol{k} = k\boldsymbol{u} = (\beta - j\alpha)\boldsymbol{u}$

Phasengeschwindigkeit:

$$v_{\rm p} = rac{c_0}{\sqrt{arepsilon_{\rm r}\,\mu_{\rm r}}} = rac{1}{\sqrt{arepsilon\mu}}$$

Wellenlänge:

$$\lambda = \frac{v_{\rm p}}{f} = \frac{c_0}{f\sqrt{\varepsilon_{\rm r}\,\mu_{\rm r}}} = \frac{\lambda_0}{\sqrt{\varepsilon_{\rm r}\,\mu_{\rm r}}}$$

Laufzeit:

$$\Delta \tau = \frac{\Delta r}{v_{\rm p}} = \Delta r \sqrt{\varepsilon \mu}$$

Phasenverschiebung (elektrische Länge):

 $\Delta \varphi = -\beta \, \Delta r = -\omega \, \Delta \tau$

Phasenkonstante:

$$\beta = \frac{2\pi}{\lambda} = \frac{\omega}{v_{\rm p}} = \omega \sqrt{\varepsilon \mu}$$

Komplexe Materialparameter:

$$\begin{split} \varepsilon_{\mathbf{r}} &= \varepsilon_{\mathbf{r}}' - \mathbf{j}\varepsilon_{\mathbf{r}}'' = |\varepsilon_{\mathbf{r}}| \mathbf{e}^{-\mathbf{j}\delta_{\varepsilon}} \approx \varepsilon_{\mathbf{r}}'(1 - \mathbf{j}\tan\delta_{\varepsilon}) \\ \mu_{\mathbf{r}} &= \mu_{\mathbf{r}}' - \mathbf{j}\mu_{\mathbf{r}}'' = |\mu_{\mathbf{r}}| \mathbf{e}^{-\mathbf{j}\delta_{\mu}} \approx \mu_{\mathbf{r}}'(1 - \mathbf{j}\tan\delta_{\mu}) \end{split}$$

Komplexe relative Permittivität bei zusätzlicher Leitfähigkeit:

 $\epsilon_{r}=\epsilon_{r}{'}-j\epsilon_{r}{''}=\epsilon_{r}{'}-j\frac{\kappa}{\omega\epsilon_{0}}$

Debye-Beziehung für polare Substanzen:

$$\begin{split} \varepsilon_{\rm r} &= \varepsilon_{\rm r\infty} + \frac{\varepsilon_{\rm r0} - \varepsilon_{\rm r\infty}}{1 + {\rm j}\omega\tau} \\ &= \varepsilon_{\rm r\infty} + \frac{\Delta\varepsilon}{1 + (\omega\tau)^2} - {\rm j} \cdot \frac{\Delta\varepsilon \cdot \omega\tau}{1 + (\omega\tau)^2} \end{split}$$

mit $\varDelta \varepsilon = \varepsilon_{\rm r0} - \varepsilon_{\rm r\infty}$.

Relative Permittivität von Wasser [19]:

$$\varepsilon_{\rm r}(f,T) = \varepsilon_{\rm r\infty}(T) + \frac{\varepsilon_{\rm r0}(T) - \varepsilon_{\rm r\infty}(T)}{1 + j\frac{f}{\gamma(T)\,{\rm GHz}}}$$

mit

$$\vartheta(T) = 1 - \frac{300}{273,15 + T/^{\circ}C}$$

$$\varepsilon_{r0}(T) = 77,66 - 103,3 \ \vartheta(T)$$

$$\varepsilon_{r\infty}(T) = 0,066 \ \varepsilon_{r0}(T)$$

$$\gamma(T) = 20,27 + 146,5 \ \vartheta(T) + 314 \ \vartheta^{2}(T)$$

Relative Permittivität von dünnen Plasmen:

$$\varepsilon_{\rm r} = 1 - \left(\frac{f_{\rm p}}{f}\right)^2$$

mit der Plasmafrequenz

$$f_{\rm p} = \sqrt{\frac{e^2 N}{4\pi^2 \varepsilon_0 m_{\rm e}}}$$

- e: Elementarladung
- N: Ladungsträgerdichte
- *m*e: Elektronenmasse

Wellenzahl:

$$k = \beta - j\alpha = \omega \sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_r}$$

$$\begin{split} \beta &= \omega \sqrt{\varepsilon_0 \mu_0} \sqrt{|\varepsilon_{\rm r}| |\mu_{\rm r}|} \cos\left(\frac{\delta_{\varepsilon} + \delta_{\mu}}{2}\right) \\ \alpha &= \omega \sqrt{\varepsilon_0 \mu_0} \sqrt{|\varepsilon_{\rm r}| |\mu_{\rm r}|} \sin\left(\frac{\delta_{\varepsilon} + \delta_{\mu}}{2}\right) \end{split}$$

Feldwellenwiderstand:

$$Z_{\rm F} = \sqrt{\frac{\mu}{\varepsilon}} = Z_{\rm F0} \sqrt{\frac{\mu_{\rm r}}{\varepsilon_{\rm r}}}$$

Poynting-Vektor:

$$S(\mathbf{r}) = \frac{1}{2} \operatorname{Re} \{ E(\mathbf{r}) \times H^*(\mathbf{r}) \}$$

Strahlungsleistungsdichte:

$$S_* = |\mathbf{S}| = \frac{1}{2} \frac{|\mathbf{E}|^2}{Z_{\rm F}} = \frac{1}{2} |\mathbf{H}|^2 Z_{\rm F}$$

3.4 Polarisation

Elektrische Feldstärke (Ausbreitung in z-Richtung):

$$E(z) = E(0) \cdot e^{-jkz} = \begin{pmatrix} E_x \\ E_y \end{pmatrix} \cdot e^{-jkz} = \begin{pmatrix} |E_x|e^{j\delta_x} \\ |E_y|e^{j\delta_y} \end{pmatrix} \cdot e^{-jkz}$$

Orientierungswinkel:

$$\tan(2\psi) = \frac{2|E_x||E_y|}{|E_x|^2 - |E_y|^2}\cos(\delta_y - \delta_x)$$

Elliptizität:

$$\sin(2\chi) = \frac{2|E_x||E_y|}{|E_x|^2 + |E_y|^2} \sin(\delta_y - \delta_x)$$

Stokes-Vektor:

$$F = \begin{pmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{pmatrix} |E_x|^2 + |E_y|^2 \\ |E_x|^2 - |E_y|^2 \\ 2 \operatorname{Re} \{E_x E_y^*\} \\ -2 \operatorname{Im} \{E_x E_y^*\} \end{pmatrix} = \begin{pmatrix} |E_x|^2 + |E_y|^2 \\ |E_x|^2 - |E_y|^2 \\ 2|E_x||E_y|\cos(\delta_y - \delta_x) \\ 2|E_x||E_y|\sin(\delta_y - \delta_x) \end{pmatrix}$$
$$= \left(|E_x|^2 + |E_y|^2 \right) \begin{pmatrix} 1 \\ \cos(2\psi)\cos(2\chi) \\ \sin(2\psi)\cos(2\chi) \\ \sin(2\chi) \end{pmatrix}$$

Müller-Matrix:

$$F_{\rm E} = \frac{1}{r^2} M F_{\rm S}$$

*F*_E: Stokes-Vektor am Empfangsort

F_S: Stokes-Vektor am Sendeort

Komplexes Polarisationsverhältnis:

$$\rho = \frac{|E_y|}{|E_x|} \cdot e^{j(\delta_y - \delta_x)} = \frac{\cos(2\chi)\sin(2\psi) + j\sin(2\chi)}{1 + \cos(2\chi)\cos(2\psi)}$$
$$\psi = \frac{1}{2}\arctan\left\{\frac{2\operatorname{Re}\{\rho\}}{1 - |\rho|^2}\right\} + 180^\circ \mod\{180^\circ\}$$
$$\chi = \frac{1}{2}\arcsin\left\{\frac{2\operatorname{Im}\{\rho\}}{1 + |\rho|^2}\right\}$$

Polarisationsvektor:

$$\varepsilon = \frac{E(0)}{|E|} = \frac{1}{\sqrt{|E_x|^2 + |E_y|^2}} \begin{pmatrix} |E_x| e^{j\delta_x} \\ |E_y| e^{j\delta_y} \end{pmatrix}$$

Polarisationsbasis:

$$\boldsymbol{E}(0) = \boldsymbol{E}_{\mathrm{A}} \cdot \boldsymbol{\varepsilon}_{\mathrm{A}} + \boldsymbol{E}_{\mathrm{B}} \cdot \boldsymbol{\varepsilon}_{\mathrm{B}}$$

Orthogonalität:

 $\boldsymbol{\varepsilon}_1^{\mathrm{H}} \cdot \boldsymbol{\varepsilon}_2 = 0$

oder

$$\psi_2 = \psi_1 + 90^\circ \mod \{180^\circ\} \land \chi_2 = -\chi_1$$

oder

$$\rho_2 = -\frac{1}{{\rho_1}^*}$$

Lineare Polarisationsbasis (Ausbreitung in z-Richtung):

$$\boldsymbol{\varepsilon}_{\mathrm{h}} = \boldsymbol{u}_{x}$$
 $\boldsymbol{\varepsilon}_{\mathrm{v}} = \boldsymbol{u}_{y}$

Zirkulare Polarisationsbasis (Ausbreitung in *z*-Richtung):

$$\boldsymbol{\varepsilon}_{\text{lhc}} = \frac{1}{\sqrt{2}} (\boldsymbol{u}_x + j\boldsymbol{u}_y) \qquad \boldsymbol{\varepsilon}_{\text{rhc}} = \frac{1}{\sqrt{2}} (\boldsymbol{u}_x - j\boldsymbol{u}_y)$$

Transformation zwischen linearer und zirkularer Basis:

$$\begin{pmatrix} \boldsymbol{\varepsilon}_{lhc}^{T} \\ \boldsymbol{\varepsilon}_{rhc}^{T} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix} \begin{pmatrix} \boldsymbol{\varepsilon}_{h}^{T} \\ \boldsymbol{\varepsilon}_{v}^{T} \end{pmatrix}$$
$$\begin{pmatrix} \boldsymbol{\varepsilon}_{h}^{T} \\ \boldsymbol{\varepsilon}_{v}^{T} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -j & j \end{pmatrix} \begin{pmatrix} \boldsymbol{\varepsilon}_{lhc}^{T} \\ \boldsymbol{\varepsilon}_{rhc}^{T} \end{pmatrix}$$

Transformation zwischen linearen und zirkularen Feldamplituden:

$$\begin{pmatrix} E_{\rm h} \\ E_{\rm v} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ j & -j \end{pmatrix} \begin{pmatrix} E_{\rm lhc} \\ E_{\rm rhc} \end{pmatrix}$$
$$\begin{pmatrix} E_{\rm lhc} \\ E_{\rm rhc} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -j \\ 1 & j \end{pmatrix} \begin{pmatrix} E_{\rm h} \\ E_{\rm v} \end{pmatrix}$$

Kohärenzmatrix:

$$\boldsymbol{J} = \begin{pmatrix} \left< |E_{\rm A}|^2 \right> & \left< E_{\rm A} E_{\rm B}^* \right> \\ \left< E_{\rm B} E_{\rm A}^* \right> & \left< |E_{\rm B}|^2 \right> \end{pmatrix}$$

Polarisationsgrad:

$$p = \sqrt{1 - \frac{4 \det J}{(\operatorname{Spur} J)^2}}$$
; $p \in [0, 1]$

3.5 Freiraumausbereitung

Empfangsleistung bei einer Freiraumfunkstrecke:

$$\frac{P_{\rm E}}{P_{\rm S}} = \frac{G_{\rm S}}{4\pi r^2} A_{\rm W} = \frac{G_{\rm S}}{4\pi r^2} \cdot \frac{\lambda_0^2}{4\pi} G_{\rm E} = \frac{\lambda_0^2}{(4\pi r)^2} G_{\rm S} G_{\rm E}$$

G_S: Gewinn der Sendeantenne

GE: Gewinn der Empfangsantenne

*A*_W: Antennenwirkfläche (in m²)

Zahlenwertgleichung für die Funkfelddämpfung:

$$\frac{a_{\rm F}}{\rm dB} = -20 \, \lg \frac{\lambda_0}{4\pi r} = 92,4 + 20 \, \lg \frac{f}{\rm GHz} + 20 \, \lg \frac{r}{\rm km}$$

Funkhorizont:

$$d_{\text{Funk}} = \sqrt{2 \cdot k_{\text{e}} \cdot R \cdot h_{\text{A}}} = \sqrt{2 \cdot (4/3) \cdot R \cdot h_{\text{A}}}$$

Streckenbezogene Regendämpfung:

$$\frac{\alpha}{\mathrm{dB/km}} = a \cdot \left(\frac{R}{\mathrm{mm/h}}\right)^{b}$$

Zahlenwerte von *a* und *b* für H- und V-Polarisation [12]:

Frequenz	a_{H}	$b_{ m H}$	$a_{ m V}$	$b_{ m V}$
2 GHz	0,0000847	1,0664	0,0000998	0,9490
10 GHz	0,01217	1,2571	0,01129	1,2156
15 GHz	0,04481	1,1233	0,05008	1,0440
20 GHz	0,09164	1,0568	0,09611	0,9847
25 GHz	0,1571	0,9991	0,1533	0,9491
30 GHz	0,2403	0,9481	0,2291	0,9129
35 GHz	0,3374	0,9047	0,3224	0,8761
60 GHz	0,8606	0,7656	0,8515	0,7486

Gangunterschied auf dem *n*-ten Fresnelellipsoid:

$$\Delta d = (2n-1)\frac{\lambda_0}{4}$$

Empfangsfrequenz bei Relativbewegung:

$$\omega_{\rm E} = \frac{\mathrm{d}\phi}{\mathrm{d}t} = \omega_{\rm S} - \beta_0 \frac{\mathrm{d}r(t)}{\mathrm{d}t} = \omega_{\rm S} + \omega_{\rm D}$$

 $\omega_{\rm S}$: Sendekreisfrequenz

 $\omega_{\rm D}$: Dopplerkreisfrequenz

r(t): Länge des Signalweges

Dopplerfrequenz bei monostatischem Radar:

$$f_{\rm D} = f_{\rm S} \cdot \frac{2 \cdot v_{\rm r}}{c_0} = \frac{2}{\lambda_0} v_{\rm r}$$

vr: Relativgeschwindigkeit

Monostatische Radargleichung:

$$\frac{P_{\rm E}}{P_{\rm S}} = \frac{G^2 \,\lambda_0^2}{(4\pi)^3 \, r^4} \cdot \sigma = \frac{A_{\rm W}^2}{4\pi \,\lambda_0^2 \, r^4} \cdot \sigma$$

 σ : Rückstreuquerschnitt

3.6 Streuung

Rückstreuquerschnitt einer leitenden Kugel:

$$\sigma = \frac{\lambda_0^2}{4\pi} \left| \sum_{n=1}^{\infty} \frac{\mathbf{j}(-1)^n (2n+1)}{z \mathbf{h}_n^{(2)}(z) (z \mathbf{h}_n^{(2)}(z))'} \right|^2 \quad ; \quad z = kr$$

 $h_n^{(2)}$: sphärische Hankel-Funktion 2. Art

Näherungen für elektrisch kleine und große Kugeln:

$$\sigma \approx 9(2\pi r/\lambda_0)^4 \pi r^2 \qquad \qquad 2\pi r/\lambda_0 \ll 1$$

$$\sigma \approx \pi r^2 \qquad \qquad 2\pi r/\lambda_0 \gg 1$$

Rückstreuquerschnitt einer leitenden Platte:

$$\sigma = 4\pi \frac{A^2}{\lambda_0^2}$$

Rückstreuquerschnitt eines Tripelspiegels:

$$\sigma = \frac{4\pi\ell^4}{3{\lambda_0}^2}$$

 ℓ : Kantenlänge

Spiegelpunkt auf doppelt gekrümmter Oberfläche:

$$\sigma = \pi r_1 r_2$$

Reflexion an einer dielektrischen Grenzschicht:

Fresnelsche Reflexionskoeffizienten:

$$r_{\perp} = \frac{E_{\rm r}}{E_{\rm h}} = \frac{\sqrt{\varepsilon_1} \cos \alpha_1 - \sqrt{\varepsilon_2 - \varepsilon_1} \sin^2 \alpha_1}{\sqrt{\varepsilon_1} \cos \alpha_1 + \sqrt{\varepsilon_2 - \varepsilon_1} \sin^2 \alpha_1}$$
$$r_{\parallel} = \frac{E_{\rm r}}{E_{\rm h}} = \frac{\varepsilon_2 \cos \alpha_1 - \sqrt{\varepsilon_1 \varepsilon_2 - \varepsilon_1^2 \sin^2 \alpha_1}}{\varepsilon_2 \cos \alpha_1 + \sqrt{\varepsilon_1 \varepsilon_2 - \varepsilon_1^2 \sin^2 \alpha_1}}$$

Snelliussches Brechungsgesetz:

$$\sqrt{\varepsilon_1}\sin\alpha_1 = \sqrt{\varepsilon_2}\sin\alpha_2$$

Grenzwinkel der Totalreflexion:

$$\sin \alpha_{2g} = \sqrt{\frac{\varepsilon_1}{\varepsilon_2}}$$

4 Wellenleiter

4.1 TEM-Leitungen

Leitungswellenwiderstand:

$$Z_{\rm L} = \sqrt{\frac{Z'}{Y'}} = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}} = \sqrt{\frac{\mu}{\varepsilon}}$$

- *R'*: Widerstandsbelag (in Ω/m)
- *L'*: Induktivitätsbelag (in H/m)
- G': Leitwertbelag (in S/m)
- C': Kapazitätsbelag (in F/m)

Ausbreitungsmaß:

$$\gamma = \alpha + j\beta = \sqrt{Z'Y'} = \sqrt{(R' + j\omega L')(G' + j\omega C')}$$

 α : Dämpfungskonstante (in Np/m)

 β : Phasenkonstante (in rad/m)

Näherungen für kleine Verluste:

$$Z_{\rm L} = \sqrt{\frac{L'}{C'}}$$

$$\beta = \omega \sqrt{L'C'}$$

$$\alpha = \frac{R'}{2} \sqrt{\frac{C'}{L'}} + \frac{G'}{2} \sqrt{\frac{L'}{C'}}$$

Phasengeschwindigkeit:

$$v_{\rm p} = \frac{\omega}{\beta} = \frac{1}{\sqrt{L'C'}} = \frac{1}{\sqrt{\varepsilon\mu}}$$

Spannung und Strom:

$$U(z) = U_{h}e^{-\gamma z} + U_{r}e^{\gamma z}$$
$$I(z) = I_{h}e^{-\gamma z} - I_{r}e^{\gamma z}$$

mit $I_{\rm h,r} = U_{\rm h,r}/Z_{\rm L}$

Wirkleistungsfluss wenn $U_{\rm r} = 0$:

$$P(z) = \frac{|U(z)|^2}{2Z_{\rm L}} = \frac{|U_{\rm h}|^2}{2Z_{\rm L}} e^{-2\alpha z} = P_0 e^{-2\alpha z}$$

Verlustleistungsbelag:

$$-\frac{\mathrm{d}P}{\mathrm{d}z} = 2\alpha P_0 \mathrm{e}^{-2\alpha z}$$

 P_0 : Leistung an der Stelle z = 0 (in W)

Verzerrungsfreiheit:

$$\frac{R'}{L'} = \frac{G'}{C'}$$

Impedanztransformation:

$$Z_{\rm E} = Z_{\rm L} \frac{Z_{\rm A} + Z_{\rm L} \tanh(\gamma \ell)}{Z_{\rm L} + Z_{\rm A} \tanh(\gamma \ell)}$$

Eingangsimpedanz leerlaufende (offene) Leitung:

$$Z_{\text{E,open}} = Z_{\text{L}} \coth(\gamma \ell) \stackrel{\alpha=0}{=} -j Z_{\text{L}} \cot(\beta \ell)$$

Eingangsimpedanz kurzgeschlossene Leitung:

$$Z_{\text{E,short}} = Z_{\text{L}} \tanh(\gamma \ell) \stackrel{\alpha=0}{=} j Z_{\text{L}} \tan(\beta \ell)$$

Messung des Leitungswellenwiderstandes:

$$Z_{\rm L} = \sqrt{Z_{\rm E,open} Z_{\rm E,short}}$$

Leitungsbeläge:

$$C' = \frac{2\pi\varepsilon_0\varepsilon_r'}{\ln(D/d)} \qquad \qquad L' = \frac{\mu_0}{2\pi} \ln\left(\frac{D}{d}\right)$$
$$G' = \omega C' \cdot \tan \delta \qquad \qquad R' = \frac{R_*}{\pi} \left(\frac{1}{D} + \frac{1}{d}\right)$$

Leitungswellenwiderstand:

$$Z_{\rm L} = \frac{Z_{\rm F0}}{2\pi\sqrt{\varepsilon_{\rm r}}} \ln \frac{D}{d}$$

Elektrische Feldstärke:

$$E_r(z) = \frac{U(z)}{r \ln \frac{D}{d}}$$

4.3 Rechteckhohlleiter

Eigenwert (identisch für H_{mn}- und E_{mn}-Typen):

$$q_{\nu} = \sqrt{\left(\frac{\pi m}{a}\right)^2 + \left(\frac{\pi n}{b}\right)^2}$$

Wellenzahl im Ausbreitungsmedium:

$$k^2 = \omega^2 \,\varepsilon_0 \,\varepsilon_{\rm r} \,\mu_0 \,\mu_{\rm r}$$

Ausbreitungsmaß des v-ten Modes:

$$\gamma_{\nu} = \sqrt{q_{\nu}^{\ 2} - k^2}$$

Eckfrequenz des *v*-ten Modes:

$$f_{\rm c\nu} = \frac{c_0}{2\pi\sqrt{\varepsilon_{\rm r}\mu_{\rm r}}}q_\nu$$

Cutoff-Wellenlänge des *v*-ten Modes:

$$\lambda_{c\nu} = \frac{2\pi\sqrt{\varepsilon_{r}\mu_{r}}}{q_{\nu}} = \frac{2\sqrt{\varepsilon_{r}\mu_{r}}}{\sqrt{\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2}}}$$

 $\lambda_{\rm c,10} = 2a\sqrt{\varepsilon_{\rm r}\mu_{\rm r}}$

Feldwellenwiderstände:

$$Z_{\rm FE} = \frac{\gamma_{\rm E}}{j\omega\varepsilon_0\varepsilon_{\rm r}} = Z_{\rm F} \cdot \sqrt{1 - \left(\frac{\lambda_0}{\lambda_{\rm c\,\nu}}\right)^2}$$
$$Z_{\rm FH} = \frac{j\omega\mu_0\mu_{\rm r}}{\gamma_{\rm H}} = \frac{Z_{\rm F}}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_{\rm c\,\nu}}\right)^2}}$$

Wirkleistung der H₁₀-Welle:

$$P_{\mathrm{W}} = \frac{ab}{4} \cdot \frac{|E_0|^2}{Z_{\mathrm{FH}}} = \frac{ab}{4} \cdot \max\{|H_x|^2\} \cdot Z_{\mathrm{FH}}$$

Hohlleiter-Wellenlänge:

$$\lambda_z = \frac{1}{\sqrt{\varepsilon_r \mu_r}} \frac{\lambda_0}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_{c\nu}}\right)^2}}$$

Gruppengeschwindigkeit:

$$v_{\rm g} = \frac{c_0}{\sqrt{\varepsilon_{\rm r}\mu_{\rm r}}} \sqrt{1 - \left(\frac{\lambda_0}{\lambda_{\rm c\,\nu}}\right)^2}$$

Resonanzfrequenzen der H_mnq- und E_mnq-Moden in quaderförmigen Hohlraumresonatoren:

$$f_{mnq} = \frac{\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{q}{c}\right)^2}}{2\sqrt{\varepsilon\mu}}$$

a, b, c: Kantenlängen (in m)

4.4 Rundhohlleiter

Cutoff-Wellenlänge:

$$\lambda_{\mathrm{c},mn} = \frac{\pi D}{p_{mn}}$$

Wertetabelle für p_{mn} :

т	Н	I _{mn} -Type	n	F	mn-Type	n
	p_{m1}	p_{m2}	p_{m3}	p_{m1}	p_{m2}	p_{m3}
0	3,832	7,016	10,174	2,405	5,520	8,654
1	1,841	5,331	8,536	3,832	7,016	10,174
2	3,054	6,706	9,970	5,135	8,417	11,620

Phasenkonstante:

$$\beta_{mn} = \sqrt{k_0^2 - \left(\frac{p_{mn}}{D/2}\right)^2}$$

Resonanzfrequenzen der H_mnq- und E_mnq-Moden in kreiszy-lindrischen Hohlraumresonatoren:

$$f_{mnq} = \frac{\sqrt{\left(\frac{p_{mn}}{R}\right)^2 + \left(\frac{q\pi}{\ell}\right)^2}}{2\pi\sqrt{\varepsilon\mu}}$$

R: Radius (in m)

 ℓ : Länge (in m)

4.5 Mikrostreifenleitungen

Effektive Breite (quasistatisch):

$$\frac{w_{\text{eff}}}{h} = \frac{w}{h} + \frac{5}{4\pi} \frac{t}{h} \left(1 + \ln \frac{4\pi w}{t} \right) \qquad \frac{w}{h} < \frac{1}{2\pi}$$
$$\frac{w_{\text{eff}}}{h} = \frac{w}{h} + \frac{5}{4\pi} \frac{t}{h} \left(1 + \ln \frac{2h}{t} \right) \qquad \frac{w}{h} \ge \frac{1}{2\pi}$$

Leitungswellenwiderstand (quasistatisch):

$$Z_{\rm L} = \frac{Z_{\rm F0}}{2\pi\sqrt{\varepsilon_{\rm r,eff}}} \ln\left(\frac{8h}{w_{\rm eff}} + \frac{w_{\rm eff}}{4h}\right) \qquad \qquad \frac{w}{h} \le 1$$
$$Z_{\rm L} = \frac{Z_{\rm F0}/\sqrt{\varepsilon_{\rm r,eff}}}{w_{\rm eff} + 1.202 + \frac{2}{2}\ln\left(\frac{w_{\rm eff}}{4h} + 1.444\right)} \qquad \qquad \frac{w}{h} > 1$$

 $2L = \frac{w_{\text{eff}}}{h} + 1,393 + \frac{2}{3}\ln\left(\frac{w_{\text{eff}}}{h} + 1,444\right)$ h

Effektive relative Permittivität (quasistatisch):

$$\varepsilon_{\mathrm{r,eff}} = \frac{\varepsilon_{\mathrm{r}} + 1}{2} + \frac{\varepsilon_{\mathrm{r}} - 1}{2}F - C$$

mit

$$F = \frac{1}{\sqrt{1 + 12h/w}} + 0.04(1 - w/h)^2 \qquad \frac{w}{h} \le 1$$
$$F = \frac{1}{\sqrt{1 + 12h/w}} \qquad \frac{w}{h} > 1$$
$$C = \frac{\varepsilon_r - 1}{4.6} \frac{t/h}{\sqrt{w/h}}$$

Dispersion:

$$\varepsilon_{\rm r,eff}(f) = \varepsilon_{\rm r} - \frac{\varepsilon_{\rm r} - \varepsilon_{\rm r,eff}(0)}{1 + G \left(\frac{f}{f_{\rm p}}\right)^2}$$
$$\lambda = \lambda_0 / \sqrt{\varepsilon_{\rm r,eff}(f)}$$

mit

$$f_{\rm P} = \frac{Z_{\rm F0}}{2\mu_0 h} \qquad \qquad G = \frac{\pi^2}{12} \frac{\varepsilon_{\rm r} - 1}{\varepsilon_{\rm r,eff}(0)} \sqrt{\frac{2\pi Z_{\rm L}}{Z_{\rm F0}}}$$

Dämpfung durch dielektrische Verluste:

$$\frac{\alpha_{\rm d}}{{\rm dB}/{\rm m}} = 27.3 \frac{\varepsilon_{\rm r}}{\sqrt{\varepsilon_{\rm r,eff}}} \left(\frac{\varepsilon_{\rm r,eff}-1}{\varepsilon_{\rm r}-1}\right) \frac{\tan\delta}{\lambda_0}$$

Dämpfung durch Leiterverluste:

$$\frac{\alpha_{\rm L}}{\rm dB/m} = 1,38 \frac{R_*}{hZ_{\rm L}} \frac{32 - (w_{\rm eff}/h)^2}{32 + (w_{\rm eff}/h)^2} \Lambda$$
$$\frac{\frac{\omega_{\rm L}}{m}}{\frac{\omega_{\rm L}}{\rm dB/m}} = 6,1 \cdot 10^{-5} \frac{R_* Z_{\rm L} \varepsilon_{\rm r,eff}}{h} \left(\frac{\omega_{\rm eff}}{h} + \frac{\frac{2}{3} \frac{w_{\rm eff}}{h}}{\frac{w_{\rm eff}}{h} + 1,444} \right) \Lambda$$
$$\frac{\omega_{\rm H}}{m} > 1$$

mit

$$\Lambda = 1 + \frac{h}{w_{\text{eff}}} \left(1 + \frac{5t}{4\pi w} + \frac{5}{4\pi} \ln \frac{4\pi w}{t} \right) \qquad \frac{w}{h} < \frac{1}{2\pi}$$
$$\Lambda = 1 + \frac{h}{w_{\text{eff}}} \left(1 - \frac{5t}{4\pi w} + \frac{5}{4\pi} \ln \frac{2h}{t} \right) \qquad \frac{w}{h} \ge \frac{1}{2\pi}$$

5 Antennen

Strahlungsfelddarstellung als Wellenspektrum:

$$E(x, y, z) = \frac{1}{4\pi^2} \iint_{-\infty}^{+\infty} f(k_x, k_y) \mathrm{e}^{-\mathrm{j}\boldsymbol{k}\cdot\boldsymbol{r}} \,\mathrm{d}k_x \,\mathrm{d}k_y$$

Darstellung mit Propagation in *z*-Richtung:

$$E(x, y, z) = \frac{1}{4\pi^2} \int_{-\infty}^{+\infty} E(k_x, k_y, z) e^{-j(k_x x + k_y y)} dk_x dk_y$$
$$E(k_x, k_y, z) = \int_{-\infty}^{+\infty} E(x, y, z) e^{j(k_x x + k_y y)} dx dy$$
$$E(k_x, k_y, z) = f(k_x, k_y) e^{-jk_z z}$$

Klemmenimpedanz:

$$Z_{\rm A} = 2 \frac{P_{\rm rad} + P_{\rm V} + 2j\omega(W_{\rm m} - W_{\rm e})}{|I_0|^2}$$

*P*_{rad}: abgestrahlte Leistung

*P*_V: Verlustleistung

*W*_m: mittlere magnetische Energie im Nahfeld

*W*_e: mittlere elektrische Energie im Nahfeld

Strahlungswiderstand des Hertzschen Dipols:

 $R_{\rm S,HD} = 80 \,\Omega \cdot \pi^2 \left(\frac{\Delta}{\lambda_0}\right)^2$

Wirkfläche des Hertzschen Dipols:

$$A_{\rm W,HD} = \frac{3\lambda_0^2}{8\pi}$$

Gewinn des Hertzschen Dipols:

$$G_{\text{HD}} = \frac{3}{2}$$

Abgestrahlte Leistung:

$$P_{\rm rad} = \frac{1}{2} \bigoplus \operatorname{Re} \{ \boldsymbol{E} \times \boldsymbol{H}^* \} \, \mathrm{d} \boldsymbol{A}$$

Effektive Länge einer Empfangsantenne:

$$\ell_{\rm eff} = \frac{U_0}{E_0}$$

U₀: Klemmenleerlaufspannung

*E*₀: einfallende elektrische Feldstärke

Verlustwiderstand eines $\lambda/2$ -Dipols:

$$R = \frac{\lambda_0}{8\pi r_0 \kappa \delta}$$

Effektive Länge einer geraden Monopolantenne:

$$\ell_{\rm eff} = \frac{\lambda}{2\pi} \frac{1 - \cos(2\pi\ell/\lambda)}{\sin(2\pi\ell/\lambda)}$$

Strahlungsintensität (Leistung pro Raumwinkel):

$$U(\vartheta,\varphi) = r^2 W_{\rm rad}(\vartheta,\varphi)$$

W_{rad}: Strahlungsleistungsdichte im Fernfeld

Isotroper Kugelstrahler:

$$P_{*,i} = \frac{P_{\rm S}}{4\pi r^2} \qquad (\text{Strahlungsleistungsdichte})$$
$$A_{\rm W,i} = \frac{\lambda_0^2}{4\pi} \qquad (\text{Wirkfläche})$$
$$U_0 = \frac{P_{\rm S}}{4\pi} \qquad (\text{Strahlungsintensität})$$

Direktivität:

$$D(\vartheta, \varphi) = \frac{U(\vartheta, \varphi)}{U_0} = \frac{4\pi U(\vartheta, \varphi)}{P_{\text{rad}}}$$

Antennenwirkungsgrad:

$$\eta = \frac{P_{\rm rad}}{P_{\rm S}}$$

Gewinn:

$$G(\vartheta, \varphi) = \eta D(\vartheta, \varphi)$$

Wirkfläche einer Antenne mit dem Gewinn G:

$$A_{\rm W} = A_{\rm W,i}G = \frac{\lambda_0^2}{4\pi}G$$

Flächenwirkungsgrad einer kreisrunden Apertur:

$$q = G\left(\frac{c_0}{\omega R}\right)^2 = G\left(\frac{\lambda_0}{2\pi R}\right)^2$$

Gruppenfaktor von N gleichphasig gespeisten Strahlern:

6.2 Koppelschaltungen

$$F_{\rm G}(\vartheta,\varphi) = \left| \sum_{n=1}^{N} {\rm e}^{-{\rm j}\beta_0 \boldsymbol{r}_n \cdot \boldsymbol{u}} \right|$$

u: Einheitsvektor in Richtung (ϑ, φ)

 r_n : Positionsvektor des *n*-ten Strahlers

Abschätzung der Halbwertsbreite:

$$\theta_{3\,\mathrm{dB}} \approx 70^\circ \cdot \frac{\lambda_0}{L}$$

Abschätzung der Halbwertsbreite (Zweiwegediagramm):

$$\theta_{3\,\mathrm{dB}} pprox 50^\circ \cdot rac{\lambda_0}{L}$$

Abschätzung des Gewinns aus den Halbwertsbreiten:

$$G \approx \frac{4\pi}{\theta_{3 \text{ dB}}/\text{rad} \cdot \phi_{3 \text{ dB}}/\text{rad}} \approx \frac{41000}{\theta_{3 \text{ dB}}/^{\circ} \cdot \phi_{3 \text{ dB}}/^{\circ}}$$

Abschätzung der Fernfeldgrenze:

 $R \approx 2 rac{L^2}{\lambda_0}$

L: größte Ausdehnung der Antennenapertur

6 Passive Schaltungen

6.1 Schwingkreise

Resonanzkreisfrequenz:

$$\omega_{\rm R} = \frac{1}{\sqrt{LC}}$$

Resonanzblindwiderstand und -blindleitwert:

$$X_{\rm R} = \omega_{\rm R} L = \frac{1}{\omega_{\rm R} C}$$
 $B_{\rm R} = \omega_{\rm R} C = \frac{1}{\omega_{\rm R} L}$

Güte:

$$Q = \frac{X_{\rm R}}{R} = \frac{B_{\rm R}}{G}$$

Relative Verstimmung:

$$v = \frac{\omega}{\omega_{\rm R}} - \frac{\omega_{\rm R}}{\omega}$$

Bandbreite:

$$B = \frac{f_{\rm R}}{O}$$

Impedanz und Admittanz:

$$Z = R + j\omega L + \frac{1}{j\omega C} = R(1 + jQv)$$
$$Y = G + j\omega C + \frac{1}{j\omega L} = G(1 + jQv)$$

Resonanzbedingung bei Leitungsresonatoren:

Resonanz transformation:

Wellenwiderstandstransformation mit Widerständen und minimaler Dämpfung ($Z_{L1} > Z_{L0}$):

$$\begin{aligned} \frac{a_{\min}}{dB} &= 10 \lg \left\{ \frac{2 \left(Z_{L1} + \sqrt{Z_{L1}^2 - Z_{L1} Z_{L0}} \right) - Z_{L0}}{Z_{L0}} \right\} \\ R_1 &= \sqrt{Z_{L1}^2 - Z_{L1} Z_{L0}} \\ R_2 &= Z_{L0} \sqrt{Z_{L1} / (Z_{L1} - Z_{L0})} \end{aligned} \right\}$$

Wellenwiderstandstransformation mit Widerständen und spezifizierter Dämpfung ($Z_{L1} > Z_{L0}$):

$$A = 10^{a/10 \text{ dB}} \qquad R_2 = \frac{2\sqrt{AZ_{L1}Z_{L0}}}{A - 1}$$
$$R_1 = Z_{L1} \left(\frac{A+1}{A-1}\right) - R_2 \qquad R_3 = Z_{L0} \left(\frac{A+1}{A-1}\right) - R_2$$

Wellenwiderstandstransformation mit zwei Blindelementen Ausgewählte Werte für $Z_0 = 50 \Omega$: ($Z_{L1} < Z_{L0}$):

$$W = \frac{Z_{L0}}{Z_{L1}}$$
 $X = Z_{L1}\sqrt{W-1}$ $B = \frac{\sqrt{W-1}}{WZ_{L1}}$

Breitbandige Wellenwiderstandstransformation in 2 Stufen $(Z_{L1} < Z_{L0})$:

Geometrische Stufung:

$$W = \frac{Z_{L0}}{Z_{L2}} = \frac{Z_{L2}}{Z_{L1}} \qquad \qquad Z_{L2}\sqrt{Z_{L0}Z_{L1}}$$
$$X_1 = Z_{L1}\sqrt{W - 1} \qquad \qquad B_1 = \frac{\sqrt{W - 1}}{WZ_{L1}}$$

$$X_2 = Z_{L2}\sqrt{W-1} \qquad \qquad B_2 = \frac{\sqrt{W-1}}{WZ_{L2}}$$

6.3 Dämpfungsglieder

Angepasstes Π-Dämpfungsglied:

Angepasstes T-Dämpfungsglied:

$$Z_1^{\mathrm{T}} = Z_0 \cdot \tanh \frac{a}{2} \qquad \qquad Z_2^{\mathrm{T}} = \frac{Z_0}{\sinh a}$$

mit $a = \ln |U_1/U_2|$.

	3 dB	6 dB	10 dB	15 dB	20 dB	30 dB
Z_{1}^{Π}	292,4 Ω	150,5 Ω	96,2 Ω	71,6 Ω	61,1 Ω	53,3 Ω
Z_{2}^{Π}	17,6 Ω	37,4 Ω	71,2 Ω	136,1 Ω	247,5 Ω	789,8 Ω
Z_1^T	8,5 Ω	16,6 Ω	26,0 Ω	34,9 Ω	40,9 Ω	46,9 Ω
	141,9 Ω	66,9 Ω	35,1 Ω	18,4 Ω	10,1 Ω	3,2 Ω

Resistiver angepasster 6-dB-Leistungsteiler:

6.4 Filter

Toleranzschema für Tiefpässe:

 $\omega_{\rm p}$: Ende des Passbandes

 $\omega_{\rm s}$: Beginn des Sperrbandes

 $A_{\rm s}^2$: minimale Sperrdämpfung

Butterworth-Tiefpass:

$$|H(j\omega)|^2 = \frac{1}{1 + \varepsilon^2 \Omega^{2n}}$$
; $\Omega = \frac{\omega}{\omega_{\rm p}}$

3-dB-Grenzfrequenz:

$$\omega_{3\,\mathrm{dB}} = \omega_{\mathrm{p}}/\varepsilon$$

Butterworth-Filterordnung:

$$n \approx \frac{\ln(A_{\rm s}/\varepsilon)}{\ln(\omega_{\rm s}/\omega_{\rm p})}$$

Tschebyscheff-Tiefpass:

$$|H(j\omega)|^2 = \frac{1}{1 + \varepsilon^2 T_n^2(\Omega)}$$

T_n: Tschebyscheff-Polynom *n*-ter Ordnung

Tschebyscheff-Filterordnung:

$$n \approx \frac{\operatorname{arccosh}(A_{\rm s}/\varepsilon)}{\operatorname{arccosh}(\omega_{\rm s}/\omega_{\rm p})}$$

Tiefpass-Hochpass-Transformation:

$$\Omega \rightarrow -\frac{1}{\Omega}$$

Tiefpass-Bandpass-Transformation:

 $\Omega \quad \to \quad \kappa \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right)$

$$\omega_0 = \sqrt{\omega_{\text{p1}}\omega_{\text{p2}}} \qquad \qquad \kappa = \frac{\omega_0}{\omega_{\text{p2}} - \omega_{\text{p1}}}$$

 ω_0 : Mittenfrequenz

 κ : relative Bandbreite

Tiefpass-Bandsperre-Transformation:

$$\Omega \longrightarrow \frac{1}{\kappa \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

7 Mikrowellennetzwerke

Wellengrößen:

$$a = \frac{U + IZ_0}{2\sqrt{Z_0}} = \frac{U_h}{\sqrt{Z_0}} = I_h \sqrt{Z_0}$$
$$b = \frac{U - IZ_0}{2\sqrt{Z_0}} = \frac{U_r}{\sqrt{Z_0}} = I_r \sqrt{Z_0}$$

Normierte Impedanz und Admittanz:

$$z = Z/Z_0 \qquad \qquad y = YZ_0$$

Reflexionsfaktor:

$$r = \frac{z-1}{z+1} \qquad \qquad z = \frac{1+r}{1-r}$$

Stehwellenverhältnis (VSWR):

$$s = \frac{U_{\max}}{U_{\min}} = \frac{I_{\max}}{I_{\min}} = \frac{1+|r|}{1-|r|}$$

Betrag der Reflexion:

$$|r| = \frac{s-1}{s+1} = \frac{U_{\max} - U_{\min}}{U_{\max} + U_{\min}}$$

 $\lambda/4$ -Transformator:

$$Z_{\rm L} = \sqrt{Z_1 Z_2}$$

Binomial gestufter Impedanztransformator:

$$\ln \frac{Z_{n+1}}{Z_n} = 2^{-N} \binom{N}{n} \ln \frac{Z_A}{Z_E}$$

N: Anzahl der $\lambda/4$ -Stufen

Reflexionsfaktortransformation durch eine Leitung:

$$r_{\rm E} = r_{\rm A} {\rm e}^{-2\gamma\ell}$$

Streumatrix:

$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = S \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Wellenkettenmatrix:

$$\begin{pmatrix} b_1 \\ a_1 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = C \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}$$

Umrechnung zwischen Streu- und Kettenform:

$$C = \frac{1}{s_{21}} \begin{pmatrix} -\det S & s_{11} \\ -s_{22} & 1 \end{pmatrix} \qquad S = \frac{1}{c_{22}} \begin{pmatrix} c_{12} & \det C \\ 1 & -c_{21} \end{pmatrix}$$

Umrechnung zwischen Streu- und Widerstandsform:

$$z = (E - S)^{-1}(E + S) = (E + S)(E - S)^{-1}$$

$$y = (E + S)^{-1}(E - S) = (E - S)(E + S)^{-1}$$

$$S = (z + E)^{-1}(z - E) = (z - E)(z + E)^{-1}$$

$$S = (y + E)^{-1}(y - E) = (y - E)(y + E)^{-1}$$

- *E*: Einheitsmatrix
- *S*: Streumatrix (auf Z_0 bezogen)
- *z*: normierte Impedanzmatrix ($z = Z/Z_0$)
- \boldsymbol{y} : normierte Admittanzmatrix ($\boldsymbol{y} = YZ_0$)

Reflexionsfaktortransformation durch ein Zweitor:

$$r_{\rm E} = s_{11} + \frac{s_{12}s_{21} \cdot r_{\rm A}}{1 - s_{22} \cdot r_{\rm A}} = \frac{s_{11} - \det S \cdot r_{\rm A}}{1 - s_{22} \cdot r_{\rm A}}$$

Verlustfreiheit:

$$S^{\mathrm{H}}S = E$$

Eigenreflexionsfreiheit:

$$s_{ii} = 0 \quad \forall \quad i$$

Reflexionssymmetrie:

$$s_{ii} = s_{jj} \quad \forall \quad i, j$$

Transmissionssymmetrie (Reziprozität):

 $s_{ij} = s_{ji} \quad \forall \quad i \neq j \quad \text{oder} \quad S^{\mathrm{T}} = S$

Ein Mehrtor heißt (*voll*)*symmetrisch*, wenn es reflexionssymmetrisch ist und wenn obendrein alle s_{ij} mit $i \neq j$ den gleichen Wert haben.

Ein vollsymmetrisches Dreitor kann nicht gleichzeitig eigenreflexionsfrei und verlustfrei sein.

Streuparameter einer Serienimpedanz:

Streuparameter einer Paralleladmittanz:

$$s_{11} = s_{22} = -\frac{y}{2+y}$$
 $s_{12} = s_{21} = \frac{2}{2+y}$

Leistungsteilung an einer angepassten Parallelverzweigung $(Y_2 + Y_3 = Y_1)$:

Teilung gemäß $P_2 = \alpha P_1$ und $P_3 = (1 - \alpha)P_1$:

$$Z_2 = Z_1/\alpha \qquad \qquad Z_3 = Z_1/(1-\alpha)$$

8 Rauschen

Zusammenhang zwischen SNR und E_b/N_0 :

$$\frac{S}{N} = \frac{E_{\rm b}/T_{\rm b}}{N_0 B} = \frac{E_{\rm b}}{N_0} \cdot \frac{1}{T_{\rm b} B}$$

- S: Signalleistung
- N: Rauschleistung
- *E*_b: Signalenergie pro Bit
- N₀: spektrale Rauschleistungsdichte
- B: Bandbreite
- *T*_b: Zeitdauer eines Bits

Der Kehrwert $1/(T_bB)$ des Zeit-Bandbreite-Produkts T_bB wird auch *spektrale Effizienz* genannt.

Verfügbare Rauschleistung eines thermisch rauschenden ohmschen Widerstands:

$$P_{\rm V} = \frac{|\dot{U}_{\rm R}|^2}{4R} = kT \cdot \Delta f$$

Verfügbare Rauschleistung bei Raumtemperatur:

$$\frac{P_{\rm V}}{\rm dBm} = -174 + 10 \, \rm lg \, \frac{\Delta f}{\rm Hz} \quad \rm bei \, T_0 = 300 \, \rm K$$

Boltzmann-Konstante:

$$k = 1,38 \cdot 10^{-23} \,\mathrm{Ws/K}$$

Serienschaltung von Rauschspannungsquellen:

$$\begin{split} \tilde{U}_{\rm R} &= \sqrt{\tilde{U}_{\rm R1}{}^2 + \tilde{U}_{\rm R2}{}^2} \quad (\text{unkorreliert}) \\ \tilde{U}_{\rm R} &= \tilde{U}_{\rm R1} + \tilde{U}_{\rm R2} \qquad (\text{voll korreliert}) \end{split}$$

Definition der Rauschzahl:

$$F = F_{\rm Z} + 1 = \frac{S_1/N_1}{S_2/N_2}$$

Verfügbare Rauschleistung am Ausgang eines rauschenden Zweitors:

$$N_2 = k \Delta f GT_1 + k \Delta f GT_1 F_Z(T_1)$$

Umrechnung der Zusatzrauschzahl auf eine andere Generatortemperatur:

$$F_{\mathrm{Z}}(T_1) = \frac{T_0}{T_1} \cdot F_{\mathrm{Z}}(T_0)$$

Kettenrauschzahl:

$$F_{Z,ges} = F_{Z1} + \frac{F_{Z2}}{v_{p1}} + \frac{F_{Z3}}{v_{p1}v_{p2}} + \dots + \frac{F_{ZN}}{v_{p1}v_{p2}\cdots v_{pN-1}}$$

Systemrauschtemperatur:

$$T_{\rm S} = T_{\rm A} + F_{\rm Z} T_0$$

Empfänger-Grenzfeldstärke:

$$\tilde{E}_{\rm g} = \frac{1}{h_{\rm eff}} \sqrt{4kT_{\rm S}R_{\rm i}\cdot\Delta f}$$

Antennenrauschtemperatur:

$$T_{\rm A} = \frac{1}{4\pi} \oiint G(\Omega) T_{\rm H}(\Omega) \, \mathrm{d}\Omega$$

9 Oszillatoren

Anschwingbedingung bei Entdämpfung eines Parallelresonanzkreises:

$$G_{\rm n} = G_{\rm L} \quad \wedge \quad \omega C - \frac{1}{\omega L} = 0$$

Anschwingbedingung bei Rückkopplung eines Verstärkers:

$$|k| \cdot |v| = 1 \quad \land \quad \varphi_v + \varphi_k = 2n\pi \quad \text{mit} \quad n \in \mathbb{N}_0$$

10 Verstärker

Klemmenleistungsgewinn:

$$G = \frac{\text{Leistung an die Last}}{\text{Leistung vom Generator}}$$
$$= \frac{|s_{21}(1 - |r_L|^2)|^2}{1 - |s_{11}|^2 + |r_L|^2(|s_{11}|^2 - |\det S|^2) - 2\operatorname{Re}\{r_L(s_{22} - s_{11}^* \det S)\}}$$

Übertragungsgewinn (Betriebsleistungsgewinn):

$$G_{\rm T} = \frac{\text{Leistung an die Last}}{\text{vom Generator verfügbare Leistung}}$$
$$= \frac{1 - |r_{\rm G}|^2}{|1 - r_{\rm G} s_{11}|^2} |s_{21}|^2 \frac{1 - |r_{\rm L}|^2}{|1 - r_{\rm L} r_2|^2}$$

Verfügbarer Leistungsgewinn:

$$G_{\max} = \frac{\text{vom Verstärker verfügbare Leistung}}{\text{vom Generator verfügbare Leistung}}$$
$$= |s_{21}|^2 \frac{1 - |r_L|^2}{(1 - |r_G|^2)|1 - r_L s_{22}|}$$

Einfügungsgewinn:

$$G = \frac{\text{Leistung an die Last}}{\text{Leistung vom Generator an die Last}}$$

Stabilitätsfaktor:

$$K = \frac{1 - |s_{11}|^2 - |s_{22}|^2 + |\det S|^2}{2|s_{12}||s_{21}|}$$

Stabilitätsbedingung für einzelnen Transistor:

K > 1 \land $|\det S| < 1$

Stabilitätskreis Lastreflexionsfaktor:

$$M_{\rm L} = \frac{s_{22}^* - s_{11} (\det S)^*}{|s_{22}|^2 - |\det S|^2} \qquad \text{Mittelpunkt}$$
$$R_{\rm L} = \left| \frac{s_{21} s_{12}}{|s_{22}|^2 - |\det S|^2} \right| \qquad \text{Radius}$$

Stabilitätskreis Generatorreflexionsfaktor:

$$M_{\rm G} = \frac{s_{11}^* - s_{22} (\det S)^*}{|s_{11}|^2 - |\det S|^2} \qquad \text{Mittelpunkt}$$
$$R_{\rm G} = \left| \frac{s_{21} s_{12}}{|s_{11}|^2 - |\det S|^2} \right| \qquad \text{Radius}$$

Quellen und weiterführende Literatur

- [1] I. J. Bahl and P. Bhartia: *Microstrip Antennas*. Dedham, MA: Artech House, 1980.
- [2] C. A. Balanis: Advanced Engineering Electromagnetics. Chichester: John Wiley & Sons, 1989.
- C. A. Balanis: Antenna Theory. Analysis and Design. 3rd ed. Hoboken, [27] New Jersey: John Wiley & Sons, 2005.

- [4] H. Brand: Schaltungslehre linearer Mikrowellennetze. Stuttgart: Hirzel-Verlag, 1970.
- [5] R. E. Collin: Antennas and Radiowave Propagation. New York: McGraw-Hill, 1985.
- [6] R. E. Collin: Foundations for Microwave Engineering. 2nd ed. IEEE Press Series on Electromagnetic Theory. Hoboken, New Jersey: Wiley & Sons, 2001.
- [7] J. Detlefsen und U. Siart: *Grundlagen der Hochfrequenztechnik*. 4. Aufl. München: Oldenbourg, 2012.
- [8] E. O. Hammerstad: "Equations for Microstrip Circuit Design". In: Proc. 5th European Microwave Conference. Hamburg, Germany, September 1975, pp. 268–272.
- [9] E. O. Hammerstad and O. Jensen: "Accurate Models for Microstrip Computer-Aided Design". In: *IEEE MTT-S International Microwave Symposium Digest.* Washington, DC, USA, May 28–30, 1980, pp. 407– 409.
- [10] D. A. Hill: Electromagnetic Fields in Cavities. Deterministic and Statistical Theories. IEEE Press Series on Electromagnetic Wave Theory. Hoboken, New Jersey: John Wiley & Sons, 2009.
- [11] A. Ishimaru: Electromagnetic Wave Propagation, Radiation, and Scattering. Englewood Cliffs: Prentice Hall, 1991.
- [12] Specific attenuation model for rain for use in prediction methods. Recommendation ITU-R P.838-3. International Telecommunication Union (ITU). Geneva, Switzerland, March 2005. URL: https://www.itu.int/rec/ R-REC-P.838/en (visited on 03/25/2020).
- [13] K. W. Kark: Antennen und Strahlungsfelder. 4. Aufl. Wiesbaden: Vieweg + Teubner, 2011.
- [14] M. Kobayashi: "A Dispersion Formula Satisfying Recent Requirements in Microstrip CAD". In: *IEEE Trans. Microw. Theory Techn.* MTT-36.8 (August 1988), pp. 1246–1250.
- [15] M. K. Krage and G. I. Haddad: "Frequency-Dependent Characteristics of Microstrip Transmission Lines". In: *IEEE Trans. Microw. Theory Techn.* MTT-20.10 (October 1972), pp. 678–688.
- [16] J. D. Kraus: Antennas. 2nd ed. New York: McGraw-Hill, 1988.
- [17] R. Kröger und R. Unbehauen: *Elektrodynamik*. 3. Aufl. Stuttgart: Teubner, 1993.
- [18] T. H. Lee: Planar Microwave Engineering. Cambridge: Cambridge University Press, 2004.
- [19] H. J. Liebe, G. A. Hufford, and T. Manabe: "A model for the complex permittivity of water at frequencies below 1 THz". In: *International Journal of Infrared and Millimeter Waves* 12.7 (1991), pp. 659–675.
- [20] H. Meinke und F. W. Gundlach: Taschenbuch der Hochfrequenztechnik. Hrsg. von K. Lange und K.-H. Löcherer. 5. Aufl. Berlin: Springer, 1992.
- [21] K. Meyberg und P. Vachenauer: Höhere Mathematik 1. Berlin: Springer, 1990.
- [22] S. J. Orfanidis: Electromagnetic Waves and Antennas. Rutgers University, August 1, 2016. URL: https://www.ece.rutgers.edu/orfanidis (visited on 03/11/2025).
- [23] H. W. Schüßler: Systemtheorie linearer elektrischer Netzwerke. 2. Aufl.
 Bd. 1. Netzwerke, Signale und Systeme. Berlin: Springer, 1990.
- [24] The NIST Reference on Constants, Units, and Uncertainty. NIST Standard Reference Database 121. National Institute of Standards and Technology (NIST). May 2024. URL: https://physics.nist.gov/cuu/Constants/index. html (visited on 03/29/2025).
- [25] U. Tietze und Ch. Schenk: Halbleiter-Schaltungstechnik. 12. Aufl. Berlin: Springer, 2002.
- [26] O. Zinke und H. Brunswig: *Hochfrequenztechnik 1*. Hrsg. von A. Vlcek, H. L. Hartnagel und K. Mayer. 6. Aufl. Berlin: Springer, 2000.
 - O. Zinke und H. Brunswig: *Hochfrequenztechnik 2*. Hrsg. von A. Vlcek, H. L. Hartnagel und K. Mayer. 5. Aufl. Berlin: Springer, 1999.