

Description

culated by

 $\Gamma =$

These nomographs show several mismatch characteristics on one scale versus the linear scale of reflectivity $|\Gamma|$.

Consider an RF transmission line with characteristic impedance Z_{L} , which is terminated by the impedance Z.

The corresponding reflection coefficient is then cal-

where
$$z = Z/Z_L$$
. For a real impedance $Z = R$ the
reflectivity Γ is also real and therefore $\Gamma = |\Gamma|$.
In case of $\Gamma = 0$, that is $Z = Z_L$, maximum power
 P_{max} is transmitted to the load and none is reflected
(matched load). For $\Gamma \neq 0$ the maximum power ra-
tio is given by

$$\frac{P}{P_{\rm max}} = 1 - |\Gamma|^2 \,.$$

 $\frac{z-1}{z+1}$

The same in decibels (dB) is calculated by

$$\frac{P/P_{\text{max}}}{\text{dB}} = 10\log(1-|\Gamma|^2)\,.$$

Given some reflectivity $|\Gamma|$, the corresponding voltage standing wave ratio (VSWR) is

$$s=\frac{1+|\Gamma|}{1-|\Gamma|}\,,$$

which also describes the ripple of voltage and current magnitudes along the line since

$$s = \frac{U_{\max}}{U_{\min}} = \frac{I_{\max}}{I_{\min}}$$

The reciprocal of *s* is called the matching coefficient *m*, which is also known as the inverse VSWR. You can easily get sorted out in your mind that for real-valued Z = R, *s* equals normalized impedance R/Z_L if $R \ge Z_L$ and *m* equals normalized impedance R/Z_L if $R \le Z_L$.

© Uwe Siart 2000-2025 http://www.siart.de/lehre/reflection_loss.pdf